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{ruract. Recent analyses revealed that chaotic behavior is
o in a wmodel of curreats induced by wind over
wpography that slopes offshore and varies approximately
perdically alongshore. These analyses were based on the
assumption that the forcing by wind is harmonic. We examine
the more realistic case where the wind field, and therefore the
wind forcing, is random. Given a wind field with specified
spectral density, and any specified parameters of the bottom
topugraphy, we use generalized Melnikov transform technique
1o otimate upper bounds for probabilities that chaotic
evcursions will occur during a specified time interval.

puuiM

R wumé. Des travaux récents ont révélé la possibilité du
comportement chaotique d’un modele de courants océaniques
pruduits par l'action du vent. Ces travaux reposent sur
I'hs pothése simplificatrice que les excitations dues au vent sont
barmonigues. Nous examinons le cas plus réaliste ol les vitesses
du vent et les excitations qui en résultent sont aléatoires. Etant
donné un champ des vitesses du vent défini par sa densité
spectrale, et un ensemble de parametres définissant la
opographie du fonds de 'océan, nous utilisons une version
géniralisée de la technique de Melnikov pour estimer des bornes
supéricures de probabilités pour que des excursions chaotiques
aient liew pendant un intervalle de temps donné,

I. INTRODUCTION

Recent studies have pointed out the complexity of the time
Jependence of mesoscale currents in the coastal ocean. As
ried i [1], according to observations from moored current
meters with limited temporal resolution, most ocean velocity
t.<lds contain energy in an apparently continuous band of
tiequencies below the local inertial frequency. This has been
aznbuted to the wide range of frequencies and scales at
which the coastal ocean is forced, and to instabilities and
nonhinearities of the flow field that transter energy between
trequencies.  An  alternative explanation  was  recently
proposed in 1], which showed that an explanation of the
ohwerved continuous range of frequencies may lie in the
chautic nature of the flow due to forcing by wind stress. In
the context of the theory of deterministic dynamical systems
the term "chaotic” was defined about two decades ago. Itis
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applied to systems exhibiting sensitivity to initial conditions,
continuous spectral density -- an indication that the chaotic
systems’ behavior is neither periodic nor quasiperiodic --
and, under certain conditions, irregular exits from regions of
phase space associated with the potential wells of the
systems’ Hamiltonian counterparts.

The system analyzed in [1] represents a simple model for
flow over a continental margin. It is based on the following
assumptions. The fluid is contained between a channel wall
at the coast and the deep ocean. The bottom of the ocean
slopes in a direction normal to the coast and has corrugaticns
with harmonic cross-sections parallel to the coast. The
amplitudes of the corrugations vary slowly in a direction
normal to the coast. The flow consists of a single layer of
homogeneous tluid and obeys a quasi-geostrophic potential
vorticity equation. The equations of motion of the flow based
on these assumptions can be written in the form of a system
of three ordinary difterential equations, the third of which is
slowly varying with time.

An additional assumption used in [1] is that the fluctuating
wind stress driving the flow is harmonic. This allows the
application to the equations of motion of the deterministic
Melnikov approach developed for slowly varying systems
with harmonic forcing in [2] and [3]. The necessary
condition for chaotic behavior of the harmonically-driven
system, given by the Smale-Birkhoff theorem, is that the
Melnikov function of the system have simple zeros.

The actual wind field is random, so that the wind-induced
stresses that drive the flow are also random, rather than
being harmonic. In this paper we study the effect of the
randomness of the forcing on the behavior of the flow model
proposed in [1]. Our study uses an extension of the
Melnikov approach as applied to a class of slowly varying
oscillators from the case of harmonic forcing {2] to the case
of forcing that approximates as closely as desired a random
process with specified spectral density (4]. The extension of
the deterministic Melnikov approach to stochastic systems is
referred to here as the stochastic Melnikov approach.
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In the following sections we present our modification of
the model studied in {1], and demonstrate three features of
our approach. First, our approach eliminates the need to
guess the frequency of a harmonic forcing purportedly
equivalent to the actual random forcing. Secoud, it yields the
result that, under random excitation assumed to be Gaussian,
the necessary condition for chaos is satisfied for any
excitation, how=ver small. Third, for a given intensity of the
random excitation, it provides a lower bound of the
probability that the flow will not exhibit chaotic Jjumps
(exits) during a specified time interval.

II. ANALYTICAL MODEL

A. Equations of Motion. The equations of motion of the flow
are

)
X = - H(x,y,2) + ¢[—-rx + 7, + 7(1)]
dy
)
y= — - H(x,y,z) + ¢[—ry]
ax

Z=¢{-rz — B+ (x= D1, + 7(t)]} (la,b,c)
where x is a basic alongshore speed, y is proportional to the
out-of-phase component of a stream function for motion due
to the topography, z is the energy-enstrophy of the system,
e<1, H(x,y,z) is a Hamiltonian with parameter z given by

H(x,y,z)='/zy3+zx+‘/z(woz—z)xz—‘/zx3+(1/8)x‘, 2)
w? = 148§, (3)

4 is the amplitude of the bottom topography corrugations, er
i1s a friction coefficient related to the eddy viscosity of the
ocean flow, and €7, and e7(t) are, respectively, the steady
and fluctuating wind stress at the ocean surface [1].

B. Fluctuating Wind and Surface Wind Siresses. Our
modification of the model studied in [1] consists of replacing
the harmonic forcing by the random forcing defined in this
section.

The random forcing we shall consider js generated by
horizontal wind speed fluctuations. The spectral density of
the fluctuating horizontal wind speed  fluctuations, as
developed by Van der Hoven [5], has three main parts. The
first part has a peak at a period of about 4 days. The second
part, referred to as the spectral gap, has negligible energy
and extends over periods of about 5 hrs to 3 min. The third
part has a peak at a period of about | min and corresponds

to tluctuations with relatively small spatial coherence, so that
their overall effect on the wind-induced current may be
neglected [6]. It can be verified [5] that the part of the
spectrum relevant to our problem is closely approximated by
the curve

[ 0.2823¢n(w) + 1.300 0.0l <w=<0.10
S(w) = { 0.4072¢n(w) + 1.590 0.10<w<0.30 4
| -2.71¢fnw)]* + 5 0.30sw=3.85

where w = Q/Q,,, Q is the dimensional frequency and 0, =
27/(4 days) is the dimensional frequency corresponding to
the spectral peak, which occurs at w=1. The units of S(w)
are m*/s? (Fig. 1). For the spectrum of (4) the standard
deviation of the wind speed fluctuations is 0,~1.33 m/s.

Surface wind stresses are proportional to the square of the
wind speeds [6, pp. 37, 39]. To simplify, we do not account
here for the dependence of the proportionality factor on
atmospheric stratification. The data used to obtain the Van
der Hoven spectrum are consistent with mean speeds of
approximately 6 m/s [5], [7], so that the coefficient of
variation of the wind speed fluctuations may be assumed to
be about 0.20. To a first approximation, one may therefore
neglect the square of the wind speed fluctuations in the
expansion of the expression [U +u(t) P, where U and u(t) are
the mean and fluctuating wind speed, respectively [6, p.
169], (8]. It may then be assumed that the normalized
spectrum of the surface wind stresses is ¥ (w)=S(w)/g,? and
that, like the distribution of the wind speeds, the distribution
of the wind stresses is approximately Gaussian. Finally, we
mention that our approximation of the wind stresses assumes
that wind directional effects are small, that is, deviations
from the prevailing wind direction do not influence our
model significantly. A more exact expression for ¥ (w) can
be obtained; however, this is not needed for the purposes of
this work.

C. Shinozuka Representation of Random Excitation. Since
we assume 7(t) is a Gaussian process with variance o? and
one-sided spectral density o* V¥ (w), we may approximate the
process as

(1) = oG(t) &)

14
G = (112m)'~Q/e)'= ¢ cos(w,t+6,) (1=1,2,3) )

n=]

where ¢ is a parameter of the model, {Wnbin=1,..,£} are
independent random variables, {§,_,n= 1,..,¢} are identically
uniformly distributed over the interval (0,27}, {w.in=1,..,¢}
are nonnegative with common distribution equal to the
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spectral density of the process, ¥, and
(wydw = 1. Q)

Jt was shown in [9] that (6) can approximate the Gaussian
paths of the random process with spectral density ¥ (w) as
closely as desired provided that the finite value of ¢ is
sufficiently large. The approximation by (6) of the process
with spectral density ¥ (w) allows the Melnikov approach to
be extended to the case of random excitation [4], [10].

[Il. GENERALIZED MELNIKOV APPROACH

A. Expression for the Melnikov Process. The dynamics of
the unperturbed system (e=0) was studied by Allen et al.
(1991), who showed that for z>2,=(3/2)6**+& —1/2 the
phase plane diagram Xx-y (z=const) has a saddie point and
two elliptic centers with coordinates that satisfy the
expressions

X} —3x242(w2—2)x+22=0, y=0, (8a,b)

and contains an asymmetrical homoclinic orbit which
asymptotically approaches the saddle point in forward and
pbackward time. The two lobes of the homoclinic orbit
separate three distinct regions of phase space, corresponding
to three oscillatory regimes: one inside each lobe of the
separatrix and a third outside the separatrix. The saddle
point corresponds to the intermediate root of (8). The saddle
point and the separatrix depend continuously on z and form,
respectively, a one-dimensional manifold y(z) of (x,y,z)
points and a two-dimensional manifold of (x,y,z) points.

The existence of an oscillatory solution -- a hyperbolic T'-
torus -- among the solutions of the invariant manifold M, of
the perturbed system is established by obtaining a solution of
the equations

g(v(z) = 0, d[gy(y(z))dz # 0, (%a,b)
where g, denotes the expression between large brackets in
the r.h.s. of (1c) and the overbars indicate averaging with
respect to the angles defining the extended phase space of
the system [2], {4]. As shown in [4], (9) yield exactly the
same solution as in the harmonic perturbation case studied in
{1], that is,

2= —Vaxt+ (= 1)r e, dlg(rENVdzl,n, < 0. (10a0)

Equation 10a is substituted in (8b). The intermediate root of
the resulting equation is denoted by x,. The coordinates
(X,,Y,,Z,), Where y, is given by (8b), define to first order the
hyperbolic T'-torus on the invariant manifold M,‘. From
(10b) it follows that the orbit restricted to M’ is linearly
stable [2].

For the case of harmonic forcing studied in [1], the
expression for the Melnikov function is

m(s,0) = rC,+1,C2(w)cos(ws+0°) an
C,=C* =(x,—‘r‘,/r)[8dtan"(th/(2k°))—kob] (12)

sinh[wcos™ (ar,)/k]

Ciw) = Ci(w) = — 4wd (13)
sinh(w7/k,)
k, = (z,—w°2+3x,—-(3/2))g2)”‘ >0 (14)
bV,
A=K+ (x,— 1)}, @, = =--mmmm ) (15)
8k,—bV,,
b=d(x,~1), Vg.="%[bt(b>+16k)'"7]. (16)

C,(w) may be interpreted as a linear transfer function. It is
also referred to as scaling factor [11]. From the linearity of
the Melnikov function with respect to the perturbative terms
(12}, it follows that, if the forcing is given by (5), (6), the
expression for the Melnikov process induced by the random
forcing is

m(s,0,0,0205-10c) =

£
rC,+[( 12my2/t )20 ECx(w,)cos[w t + (w,s+6,)] an
n=1

where C, and C, are given by (12) and (13). The expectation
and variance of the Melnikov process are [10, p. 326]:

E[n(5,8,0,000---0e)] =TCi- (18)

@ @
Var[m(s,0,,020:--»0e)] = =~ f CAw)Y (w)dw. (19)
27 o

B. Mean Upcrossing Rate of Melnikov Function as an Index
of Chaotic Behavior. For a given realization of the forcing
process, the necessary condition for the occurrence of chaos
is that the corresponding realization of the Melnikov process
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have simple zeros. Since, in the limit of large £, the
Melnikov process with expectation (18) and variance (19) is
Gaussian, the probability that a realization of the process
will have simple zeros is one -- no matter how small the
noise -- provided that the time interval is infinitely long [10].
However, the probability that the Melnikov function has
simple zeros during a finite time interval T is pr<l. Letus
denote the mean and the standard deviation of the Melnikov
function by E[m] and o, If the ratio k=E[m]/g, is
sufficiently large (say, k>1.5; i.e., if the excitation is
sufficiently small in relation to the damping), then p; can be
closely approximated by using: (a) the Kac-Rice formula
[13] for the rate of upcrossing of a threshold k by a
standardized Gaussian process with one-sided spectral
density ¥_(w), E(k), and (b) the assumption that the
upcrossing is a rare event described by a Poisson process, so
that

Pr = 1 — exp[—E(k)T] (20)
E(k) = rexp(—k/2) Q1)
oo [0¢]
v=(127){[ | *¥ (w)dw]/ | Y (wdw]}'?  (22)

0 0

Note that the restriction to relatively large k does not apply
to (21).

We denote by t, the time spent by the system in a region
of phase space associated with a potential well before it exits
from that region. In the limit of weak perturbations the mean
value of t,, must be at least as large as 1/E(k) (there can be
no exit from that region as long as the stable and unstable
manifolds do not intersect). Therefore, in that limit, 1/E(k)
is a lower bound for the mean exit time, I—p; is a lower
bound for the probability that t, > T, and Pr IS an upper
bound for the probability thatt, < T.

IV. EXAMPLE

We consider the case §=0.3003, 7,/r=3.236, also studied
in {1]. From (8a) and (10a), x,=1.236, z,=0. From (8), the
unperturbed system has the fixed points {0,0}, {1.236,0}
and {1.764,0}. From (12) to (16), C,” =2.524, C,_=-7.07¢,
and

C,"(w)= ~4.8sinh(2.064w)/sinh(5.500w)  (23)

C; (w)= —4.8sinh(3.436w)/sinh(5.5000) (24)

For harmonic forcing with period w = 1 (4 case examined
by Allen et al., and assumed theretn to correspond to a
dimensional time T=4 days), C,"=-0.152, C,"=~0.609,

and the necessary condition for exits from the region
corresponding to the interior of the left well is satisfied for
o/r > 8.220, where o is the standard deviation of the
harmonic forcing. The inequality o/r > 11.74 obtains for
the right well. If o/r < 8.22 there can be no exits from
either the left region or, a fortiori, from the right region.
Note that, for w=1, the excitation needed to satisfy the
necessary condition for the occurrence of chaos (which is
also the necessary condition for the occurrence of exits
associated with chaotic behavior) is stronger for the right
well [which is the smaller of the two wells - see [1] and
weaker for the larger well.

We now consider the case of random forcing with
spectrum o®¥ (w). Figures 2 and 3 show, respectively, the
square of the transfer function, [C (w)]? and the
normalized spectral density of the Melnikov function, ¥,
(w) = [C; (w)]*¥ (w). Equation 22 applied to ¥___(w) and
¥ . (w) yields »~=0.0702 and »*=0.0534, respectively.,
The transfer functions are seen to suppress or considerably
reduce the spectral components of the wind stress with
frequencies w > 1.75 or so, and to amplify low frequency
components. The standard deviations of the Melnikov
process are 0, =0.3590 and 0, =0.7780, respectively, so
k. = |E[m_)o,_.|=9.1r/c and k,=E[m,)/o_,=7.03r/0.
We assume o/r < 8.22, say o/r=4, so k_=2.275,
k,=1.76. From (21), E(k_)=0.0053 and E(k,)=0.0113.
We have I/E(k.) = 188.6 (corresponding  to
188.6x4/(2m)=119.7 days) and 1/E(k,)=88.5 (56.3 days),
so 1/E(k_) > 1/E(k.), as one would intuitively expect, since
the left well is larger than the right well. For the left well,
for T = | month (i.e., 47.1 nondimensional time units),
Pr--ime=0.22 (21); for one year Pr--1,,=0.95. For the right
well pro)me=0.41, pr,_,,=0.998.

Suppose that a decision would hinge on whether, given the
wind spectrum (4), the probability of non-occurrence of
chaotic jumps in the current would be at least 0.5 during one
month. The lower bounds I—p;__, =1 — 0.22 = 0.78
and 1 = pr, .\, = 0.59 would provide a conservative basis
for such a decision.

For ilustrations of chaotic behavior for our system, see [1].

V. SUMMARY AND CONCLUSIONS

We considered a model of offshore currents driven by
wind speed fluctuations, studied in [1] for the periodic
fluctuations case. We examined the behavior of this model
under forcing by randomly fluctuating wind. The following
results were obtained:

(1) Necessary conditions for chaos induced by stochastic
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excitations depend on the product of the forcing spectrum
and the square of the transfer function in the expression for
the stochastic Melnikov transform.

(2) The development of a stochastic Melnikov process
allows the estimation, via the mean time between zero
upcrossings of the Melnikov process, of: (a) lower bounds
for the mean time of exit (i.e., the mean time between
chaotic jumps) from regions of phase space associated with
potential  wells; and, provided that the excitation is
sufficiently small in relation to the damping, (b) upper
bounds p; for the probabilities p,, of occurrence of exits
from those regions during a specified time interval T (lower
bounds 1—py for the probabilities 1 —p,, that no exits will
occur during T).

The possibility of chaos was assessed on the basis of the
Melnikov approach for two cases. In the first case [1] 1t was
assumed that the excitations induced by wind are harmonic
and that the entire energy of the wind stresses is
concentrated at the frequency corresponding to the peak of
the wind stress spectrum. Under these assumptions the
deterministic Melnikov approach is applicable. This
approach led to the conclusion that, for a certain parameter
range, no exits are possible. Other choices of the harmonic
forcing frequency can be made, but no guidance is available
on how well those choices will reflect the eftects of the
actual, stochastic forcing unless the problem is examined by
using a stochastic, rather than a deterministic approach.

In the second case the wind stress tluctuations were
assumed to be Gaussian with a Van der Hoven spectral
density. This assumption guarantees that, no matter how
small the forcing, exits can occur, although the mean exit
times may be quite long. Lower bounds for the probability
that exits will not occur during specified time intervals were
obtained, which could provide useful conservative estimates
on the probability of non-occurrence of chaotic transport
during a specified time interval.

The deterministic Melnikov function provides only a
necessary condition for the occurrence of chaos, that is, the
fact that the Melnikov function has simple zeros does not
mean by itself that chaos will actually occur. In fact, chaos
will generally occur only for considerably larger excitations
than the minimum excitation for which the Melnikov
function has simple zeros.

Similarly, the fact that, with probability pr, the stochastic
Melnikov process will have simple zeros during a time
interval T does not mean that chaotic transport will occur
during T with probability pr. In fact, the excitation to which
there corresponds a probability py of chaotic transport during
T is considerably larger than the excitation that causes

simple zeros of the Melnikov process to occur during T with
probability p;. Put differently, for a given excitation, 1—p¢
is a weak lower bound of the probability 1 —p,, that chaotic
transport will not occur during the time interval T, that is,
1-p; provides a conservative estimate of that probability.
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Fig. 1. Spectral density of wind speed fluctuations, S(w).
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Fig. 3. Spectral density of the Melnikov process, ¥, (w).
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. 2. Square of transfer function, {C,(w}}*.
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